A Geometric introduction

 to the Freudenthal-Tits Magic SquareHVM
Gent, October 19, 2012
'DAG'-Day 2012

Freudenthal-Tits Magic Square

	0	0	$0-0$
(-) 0	0	- - - - 0	$\text { O-0 - }-\infty$
(0)0	$0_{0}+\infty$		$0-0-0-0$
(0)00	$0_{0}+\infty$		$00-0-000$

Freudenthal-Tits Magic Square

-	0	- 0	(0) 0
(-) 0	O-	- - $0-0$	$\text { (0) } 0-0$
(0)0	$0_{0}+\infty$	$0-0-0$	$\text { (0) } 0-0-0$
(0)000	$0_{0} 00$		$00-0-00$

The Magic Game

Start with self-opposite Galois involution

The Magic Game

Take residue in fixed vertex

The Magic Game

Get Galois involution in residue

The Magic Game

Take opposite of this Galois involution

The Magic Game

Then there exists a residue of a fixed vertex such that the induced involution is a self-opposite Galois involution

The Magic Game continued

The Magic Game continued

The Magic Game continued

1
confinued

	08000	0000000
OOOOm	OOOO-m	O○○○-0.0

The Magic Game continued

9
cormued

The Magic Game continued

The Magic Game continued

$\text { (o) } 0=0$	(0) 0000	(0)0-0-0-0
0000	(0)0.0000	(0) (0) 00000
O00000	1000000	O-OOO-0-00

The Magic Game continued

(0) $0=0$	(0)0-0-0	(0)0-0,00
00000	(0) $0-000$	(0) 000000
(0)0000	(0)000-00	(-0)-00000

B_{8} Square

\bigcirc	(0) $=0$	(0) $0 \sim 0$	(0) $0 \ldots 0$
(-) 0	(0) $0-0$	(-) $0-00$	(0)0-0-000
(1)0 0	()O) $0=0$	(0)00000	(0) 00000
O0\%90	O0000	O000000	00000-000

The Freudenthal-Tits Magic Square

* Start with E8 example

Freudenthal-Tits Magic Square

	0	0	$0-0$
(-) 0	0	- - - - 0	$\text { O-0 - }-\infty$
(0)0	$0_{0}+\infty$		$0-0-0-0$
(0)00	$0_{0}+\infty$		$00-0-000$

Freudenthal-Tits Magic Square

-	0	- 0	(0) 0
(-) 0	O-	- - $0-0$	$\text { (0) } 0-0$
(0)0	$0_{0}+\infty$	$0-0-0$	$\text { (0) } 0-0-0$
(0)000	$0_{0} 00$		$00-0-00$

The second row of the Square

The second row of the Square

The second row of the Square

The second row of the Square

Projective plane
$A_{2} \times A_{2}$

Tensor product of 2 projective planes
A_{5}

Grassmannian
of projective 5-space
E_{6}

The $E_{6,1}$
parapolar space

The second row of the Square

Projective plane

Tensor product of 2 projective

Veronese
Variety

$$
V_{2}
$$

planes
$A_{2} \times A_{2}$

A_{5}

Grassmannian of projective 5-space
Grassmann
Variety
E_{6}

The $E_{6,1}$
parapolar space
26-dim $E_{6,1}$
Variety
$G(2,6)$

The second row of the Square

A_{2}
O-

Projective plane
$A_{2} \times A_{2}$

Tensor product of 2 projective planes

Segre
Variety
A_{5}

Grassmannian of projective 5-space
Grassmann
Variety
E_{6}

The $E_{6,1}$
parapolar space
26-dim $E_{6,1}$
Variety

$$
V_{2} \quad S(2,2) \quad G(2,6)
$$

The second row of the Square

Projective plane

Tensor product of 2 projective

Veronese
Variety
planes
$A_{2} \times A_{2}$

A_{5}

Line
Grassmannian of projective 5-space
Grassmann
Variety
E_{6}

The $E_{6,1}$
parapolar space
26-dim $E_{6,1}$
Variety

Projective planes over (quadratic, not necessarily associative) algebras with zero divisors

Veronese varieties

Mazzocca-Melone axioms
X a set of points of $P G(V), V$ finite vector space
Y a set of planes of $P G(V)$ such that $y \cap X$ is a conic, $\forall y \in Y$
(MM1) Two points are contained in a member of Y
(MM2) Two members of Y intersect in subset of X
(MM3) The tangent lines at $x \in X$ to all conics through x are contained in a 2 -space

Let's generalize

Mazzocca-Melone axioms, generalized
X a set of points of $P G(V), V$ finite vector space
Y a set of plaries of $P G(V)$ such that $y \cap X$ is a conic, $\forall y \in Y$
(MM1) Two points are contained in a member of Y
(MM2) Two members of Y intersect in subset of X
(MM3) The tangent lin.es at $x \in X$ to all corics through x are contained in a 2-space

Take all quadrics with maximal Witt index

Then we have the following theorem (joint with Jeroen Schillewaert):

Every Mazzocca-Melone set with $|Y|>1$ is one of:
(i) Quadric Veronesean variety V_{2}
(ii) Segre variety $S(1,2), S(1,3)$ or $S(2,2)$
(iii) Grassmann variety $G(2,5)$ or $G(2,6)$
(iv) Half-spin variety $D_{5,5}$
(v) 26-dimensional $E_{6,1}$ variety

Corollary

If all quadrics are n -dimensional and with maximal Witt index, and if $\operatorname{dim}(V) \geq 3 n+2$, then $\operatorname{dim}(V)=3 n+2$ and every Mazzocca-Melone set is a Severi variety, more exactly, one of:
(i) Quadric Veronesean variety $\mathrm{V}_{2}, \mathrm{n}=1$
(ii) Segre variety $\mathrm{S}(2,2), \mathrm{n}=2$
(iii) Grassmann variety $G(2,6), n=4$
(iv) 26 -dimensional $E_{6,1}$ variety, $n=8$

Thank you

