A Geometric introduction to the Freudenthal-Tits Magic Square

> HVM Gent, October 19, 2012 `DAG'-Day 2012

Start with self-opposite Galois involution

Take residue in fixed vertex

Get Galois involution in residue

Then there exists a residue of a fixed vertex such that the induced involution is a self-opposite Galois involution

)(\circ) \circ \circ \circ

-000

The Freudenthal-Tits Magic Square

* Start with E8 example

 $A_2 \times A_2$ A_2 E₆ A_5 6 \circ \circ \circ \circ \circ Line Tensor product Projective The E_{6,1} Grassmannian of 2 projective parapolar plane of projective planes space 5-space

 $A_2 \times A_2$ E₆ A_2 A_5 -0 $(\circ) (\circ)$ \circ) \circ (\circ Line Tensor product The $E_{6,1}$ Projective Grassmannian of 2 projective parapolar plane of projective planes space 5-space Veronese Segre Grassmann 26-dim E_{6,1} Variety Variety Variety Variety S(2,2)G(2,6) V_2

 $A_2 \times A_2$ A_2 A_5 E₆ -0 $(\circ) (\circ)$ $\overline{\circ}$ (\circ) $\overline{\circ}$ (\circ) Line Tensor product The $E_{6,1}$ Projective Grassmannian of 2 projective parapolar plane of projective planes space 5-space Veronese Segre Grassmann 26-dim E_{6,1} Variety Variety Variety Variety S(2,2) G(2,6) V_2 SEVERI VARIETIES

 $A_2 X A_2$ A_2 E₆ A_5 Line Tensor product The $E_{6,1}$ Projective Grassmannian of 2 projective parapolar plane of projective planes space 5-space Segre Grassmann 26-dim E_{6,1} Veronese Variety Variety Variety Variety Projective planes over (quadratic, not necessarily associative) algebras with zero divisors

Veronese varieties

Mazzocca-Melone axioms

X a set of points of PG(V), V finite vector space Y a set of planes of PG(V) such that $y \cap X$ is a conic, $\forall y \in Y$

(MM1) Two points are contained in a member of Y (MM2) Two members of Y intersect in subset of X (MM3) The tangent lines at $x \in X$ to all conics through x are contained in a 2-space

Let's generalize

Mazzocca-Melone axioms, generalized

X a set of points of PG(V), V finite vector space Y a set of planes of PG(V) such that y∩X is a conic, ∀y∈Y (n+1)-spaces n-dimensional quadric

(MM1) Two points are contained in a member of Y (MM2) Two members of Y intersect in subset of X (MM3) The tangent lines at $x \in X$ to all conics through x are contained in a 2-space quadrics

Take all quadrics with maximal Witt index

Then we have the following theorem (joint with Jeroen Schillewaert):

Every Mazzocca-Melone set with |Y|>1 is one of:

(i) Quadric Veronesean variety V₂
(ii) Segre variety S(1,2), S(1,3) or S(2,2)
(iii) Grassmann variety G(2,5) or G(2,6)
(iv) Half-spin variety D_{5,5}
(v) 26-dimensional E_{6,1} variety

Corollary

If all quadrics are n-dimensional and with maximal Witt index, and if $\dim(V) \ge 3n+2$, then $\dim(V) = 3n+2$ and every Mazzocca-Melone set is a Severi variety, more exactly, one of:

(i) Quadric Veronesean variety V₂, n=1
(ii) Segre variety S(2,2), n=2
(iii) Grassmann variety G(2,6), n=4
(iv) 26-dimensional E_{6,1} variety, n=8

Thank you